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ABSTRACT. Letp :R — R be a given function, and let Ap be the
set of smooth functions f such that f(p(:) + c) is smooth for any
¢ € R. We show that if p is not smooth, then either every element
of pp is constant, or there is a nonzero constant d such that Ap
equals to the set of smooth functions of periodicity d.

1. INTRODUCTION

In this paper, we prove the following result:

Theorem 1.1. let n be a nonnegative integer or o0, p : R = R be a
given function with p [€ C"(R, R) and

(1.1) A, ={fe cC"(RR) | f(p(:) +c) € C"(R,R) for any c € R}.

Then, either oy = R or pA = C'(R R) for some nonzero constant
d. Here, A, = R means that every element in A, is constant, and
CR, R) means the collection of all functions in C'(R, R) of periodicity
d.

This result is motivated by the work [1] of Christensen and Wu on
diffeological vector spaces. A weaker form of Theorem 1.1 is needed
in [1]. The method in [1] dealing with the weaker form seems not
applicable to prove Theorem 1.1.

It is clear thatgp, is a translation invariant subalgebra of C'(R, R).
As an example, take p = ¢ with E an abitrary subset of R (£/=3 R).
Then, it is clear that cos(2mx), sin(2nx) = A. In fact, it is not hard
to see that A= C'(R, R) in this specific example.

A key ingredient in the proof of Theorem 1.1 is the following result
about the continuity of maps with o-compact graph.
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Lemma 1.1. Let X be a Hausdorff Baire space, Y be a topological
space and f : X X be a map with o-compact graph. Then, f is

continuous on a dense open subset of X.

For a Baire space, we mean a topological space satisfying Baire’s
category theorem. That is, a countable intersection of open dense
subset is still dense. Typical examples of Baire spaces are complete

metric spaces and locally compact Hausdorff spaces.
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Theorem 1.1 and Lemma 1.1) of the previous version of this paper, and
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2. PROOF OF THEOREM 1.1
We first prove Lemma 1.1.
Proof of Lemma 1.1. Let

(2.1) F={(x f(x)) EXXY| xe& X}

be the graph of f. Suppose that ' = U,_; K,, where K,, is a compact
subsetof X X Yforn=1, 2, + -+ . Then, A, = m«K,) is a compact

subset of X, where my : X X ¥ — X is the natural projection. Note
that fla,: A, ¥ as a map with compact graph is continuous. To

see this, let F be any closed subset of ¥, then
(2.2) (flan) (F) = nx(Ka 0 (X X F))

is compact and hence closed.

Let F, = A, \ Int(A,) where Int(A,) is the interior of A,. Then,
U, = X\ F, is a dense open subset of X. So, N,-,U, is a dense subset
of X by that X is a Baire space. On the other hand, since X = U,_;A,,

(2.3) No1Un C U,_ Int(A,).

Hence U,_;Int(A,) is a dense open subset of X. Moreover, f is con-
tinuous at the points in U,_;Int(A,) since f|a, is continuous for n =

1,2, - - - . This completes the proof of the Lemma. Q
For clarity, we will separate the proof of Theorem 1.1 into two
cases:(i) graph of p is closed and (ii) graph of p is not closed.

Lemma 2.1. Let notations be the same as in Theorem 1.1. Suppose
that the graph of p is closed, then A, = R.
Proof. We will proceed by contradiction. Assume that A, /= R. Let

G C R be the largest open subset of R such that p is continuous on G.
By Lemma 1.1, G is dense in R. Let F = R\ G. For clarity, we divide
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the proof into several claims.
Claim 1.By the structure of open subsets in R, G is a disjoint union of
countably many open intervals. Let (a, b) be one of such open intervals

where a may be —oo and b may be +0o0. Then, p € C((a, b)).

Proof of Claim 1. We only show the case that a = —oo_and b is finite.

The proofs of the other cases are similar. In this case, (a, b) = (— 0, b].
Because the graph of pis closed and p = C(( — 0, b)), the asymptotic

behavior of p as x approaching b™ happens in only three cases:

(1) lim, .- p(x) = p(b),

(2) limy .5~ p(x) = +0c0, and

(3) limy_p- p(x) = —o00.
To prove Claim 1, we only need to exclude (2) and (3). If (2) is true,
we have

(2.4) lim f(y) = Iir‘g flp(x) +a) = f(p(b) +a)
y—s+e x—b~

for any @ € R and f & A,. This means that A= R which is a
contradiction. Case (3) can be excluded similarly.

Claim 2. F has no isolated points.

Proof of Claim 2. Suppose that xp is an isolated point of F. Then,
by Claim 1, p is continuous on a neighborhood of xp. So, xo= G which
is a contradiction.

Claim 3. Any point of continuity for p r : F—=R is a point of
continuity for p.

Proof of Claim 3. Let xo & be a point of continuity for p|r. If xo

is not a point of continuity for p. Then there is a ¢ > 0 and a sequence

{xy, X2, * ++ , X, * + +} of points tending to xo as n — 00, such that
(2.5) lp(x,) — p(xo)| = €
forany n = 1,2, . Since xo is a point of continuity for pls, x» F

for n large enough. Moreover, since xg is not isolated in F (by Claim
2) and by Claim 1, x, da, b,) where (a, b,) is an open interval in
the disjoint open interval decomposition of G for n large enough. It is

clear that a, — xp and b, — xp as n — o0o. Furthermore, since xg is a
point of continuity for p|s and a,, € F,

(2.6) Ip(a,) — plxo)| < €a/2

for n large enough. Since p € Cl([a., b,]) (by Claim 1), and by (2.5)
and (2.6), there is a point X, € [a,, b,] such that

(2.7) p(X,) = p(xo) + €/2
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or

(2.8) p(X,) = p(xo) — €/2.

Then there is a sequence {X, Xz, . - . }of points tending to xg as 1 — oo
(taking subsequence if necessary) such that

(2.9) p(Xn) = p(xo) + €/2

or

(2.10) p(Xn) = p(xo) — €/2

as N — po. This contradicts the fact that the graph of p is closed
Claim 4. p is continuous on R.

Proof of Claim 4. Assume that F 5 @By Lemma 1.1, p|e: F = R
is continuous on some dense open subset of F . So, there is an open

interval / such that p|r is continuous on /N F with /nF /= {. By Claim
3, points in I M F are points of continuity for p. So p is continuous on
/ which implies that / C G and contradicts / n F /= (.

We are now ready to complete the proof. Since p /€ C'(R, R), we
know that n = 1. Let f € A, be a nonconstant function. Then,
F(vo) = 0 for some y, € R. It is clear that

(2.11) f ()= fly — plxo) + yo)
also belongs to A, and
(2.12) F(p0x0)) = Flyo) /= 0.

Let g(x) = fw(p(x}}. Then g C'(R, R) because fé,&. Since p is
continuous at xg,

(2.13) p(x) = Fg(x))

for every x in some neighborhood of xp. This implies that p is C"
in some neighborhood of xp. Because xp was arbitrary, g C'(R, R)

which is a contradiction. Q

Lemma 2.2. Let the notation be the same as in Theorem 1.1. If the
graph of p is not closed, then either A, = R or A, = C{(R, R).

Proof. Let
(214)L={d € R | fly+d)=f(y) forany y € R and any f € A,}
It is clear that L is closed subgroup of Rsince A, C C(R, R). Let

(2.15) Alx)={yeR|y= ILrﬂap(xn) for some sequence x, — x}.
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Claim 1.Forany y e A(x), v — p(x) e L.
Proof of Claim 1. let {x,} be a sequence of points tending to x
such that

(2.16) p(xa) — y.
Then, for any f € A,,
(2.17) flp(x)+c) = lim flp(xy) + <) = fy +c)

for any ¢ € R because f(p(:) + c¢) is continuous. This means that
y — flx) € L.

Because the graph of p is not closed, there is a point x € R, such that
A(x) 3 {p(x)}. Then, by Claim 1, we know that L  {0}. Therefore,
L =R or L =dZ for some nonzero constant d. For the first case, we

know that A, = R. For the second case, we have A, C C{R, R).
Let m : R — R/dZ be the natural projection. It is clear that for any

f € C4R, R), fdescends to a function f : R/dZ — R such that

(2.18) f=fom

I'\/h:)reu:)\.rer,Tir e C"(R/d7Z, R).

Claim 2. For any constant ¢, ii(p(') + c) : R = R/dZ is continuous.
Proof of Claim 2. Let x, — x, we want to show that

rt(p(xn) + ) — rt(p(x) + c).

Suppose this is not true. Then, by the compactness of R/d7Z, there
exists a subsequence {x,,} of {x,} such that
n(p(xn) + ¢) — y € R/DZ,

asn — oo, where y/= rt(p(x) + ¢). Let z ¢ R be such that nt(z) = y.
Then

z—plx)—c /e dZ.
On the other hand, for any f € A, € G'(R R),

(2.19) F(p(xa) + €) = f © nt(p(xa,) + ) — Fly) = £(2).
Moreover, since f(p(:) + ¢) is continuous, we have
(2.20) flp(xn,) +c) = flp(x) +c),

and thus f (z) = f (p(x)+ c). Since this is true for every f = g and A,
is translation invariant, every element gf , of periodicity_z p(x)— c.
That is, z p(x) ¢ dZ, avhich is a contradiction.

We are not ready to complete the proof.

When n =0, for any f € cY(R, R), we know that
(2.21) flp+c)=fon(p+c) € R R).

This means that f € A,. So, we have shown that A, = G(R, R) for
the case n = 0.

When n = 1, if A, R, let fo be a nonconstant function in A,.
Then a similar argument as in the proof of Lemma 2.1 (after Claim 4
in the proof of Lemma 2.1) using inverse function theorem will show

that n(p + c) € C'(R/dZ, R). Then, for any f € C{R, R),

(2.22) f=fon(p+c) e (R R).

This means that f € A,. So A, = Gg(R, R). Q

Proof of Theorem 1.1. The combination of Lemma 2.1 and Lemma 2.2

gives us Theorem 1.1. Q
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